Random Effects Meta-analysis of Studies Reporting Pairs of Sensitivity and Specificity: a Comparison of Methods

Taye H. Hamza1, Johannes B. Reitsma2, Theo Stijnen1

1Department of Epidemiology and Biostatistics, Erasmus MC - Erasmus University Medical Center, P.O.Box 1738, 3000 DR Rotterdam, The Netherlands

2Department of Clinical Epidemiology, Biostatistics and Bioinformatics, Academic Medical Center, University of Amsterdam, P.O.Box 22700, 1100 DE Amsterdam, The Netherlands

International Conference on Sources of Heterogeneity in Meta-Analysis of Randomized Clinical Trials. Bremen, Germany, February 9, 2007
Outline

- Introduction
- Methods Binomial
- Simulation Study
- Data Example
- Concluding Remarks
An ideal diagnostic test discriminates between diseased and non-diseased individuals without error.

True disease status for each individual is established using a reference test.

Available data:
- Two commonly reported measures:
 - Sensitivity and Specificity or
 - Two by two table
- Other reported measures:
 - Individual subject data
 - Area under the ROC curve
 - Diagnostic likelihood ratios etc.
Data considered

- Studies reporting pairs of sensitivity and specificity or a two by two table

Objective

- Compare three random effects meta-analysis methods
 - Univariate (U)
 - Approximate bivariate (AB)
 - Exact bivariate (EB)

using a simulation study
Assume N studies report a pair of sensitivity and specificity or a two by two table:

<table>
<thead>
<tr>
<th>Test Results</th>
<th>"True" disease status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diseased</td>
</tr>
<tr>
<td>Positive</td>
<td>TP</td>
</tr>
<tr>
<td>Negative</td>
<td>FN</td>
</tr>
<tr>
<td>n_i</td>
<td>n_0</td>
</tr>
</tbody>
</table>

Observed true positive rate (TPR) and false positive rate (FPR):

- $TPR_i = Sensitivity = \frac{TP_i}{n_{1i}}$
- $FPR_i = 1 - Specificity = \frac{FP_i}{n_{0i}}$
Summarizing Sensitivity and Specificity

\[
TPR = \frac{TP}{N_{\text{Diseased}}}
\]

\[
FPR = \frac{FP}{N_{\text{Non-Diseased}}}
\]
Summarizing Sensitivity and Specificity

$$TPR = \frac{TP}{N_{Diseased}}$$

$$FPR = \frac{FP}{N_{Non-Diseased}}$$
Averaging Sensitivity and Specificity could be misleading

Often sensitivity and specificity are negatively correlated

The trade off between sensitivity and specificity can be explained by a summary ROC curve

How can we Model Sensitivity and Specificity jointly?
The Standard Summary ROC curve

\[D_i = \alpha + \beta \times S_i + \text{error} \]

with \(D_i \) (logarithm of diagnostic odds ratio) = \(\logit(TPR_i) - \logit(FPR_i) \) and \(S_i \) (measure of test positivity (threshold)) = \(\logit(TPR_i) + \logit(FPR_i) \)

- study level covariates can be added
- if \(\beta = 0 \) accuracy is independent of \(S \) resulting in symmetric SROC
- if \(\beta \neq 0 \), test accuracy depends on \(S \) resulting in asymmetric SROC
- if \(|\beta| < 1 \), sensitivity and specificity are negatively correlated
- Transforming the regression line into ROC space (\(\rightarrow \) ROC curve)
The Standard Summary ROC curve (Cont.)

- **SROC**
 - Most commonly used method
 - Easy to implement
 - Can be carried out in many statistical packages

- **Drawbacks**
 - Does not account for the between studies variability (heterogeneity)
 - Does not account the within study correlation between D and S
 - S is assumed to be error free (introduce bias in estimate of β)
 - Addition of 0.5 when there is a zero count (introduces bias)
 - Estimation technique: Weighted / Unweighted?
Univariate Random Effects Approach

Univariate Random Effects

\[\hat{D}_i = \alpha_i + \beta \hat{S}_i + \epsilon_i \]

with \(\alpha_i \sim N(\alpha, \sigma^2_\alpha) \), \(\epsilon_i \sim N(0, \hat{\sigma}^2_{Di}) \) and \(\hat{\sigma}^2_{Di} = \frac{1}{TP_i} + \frac{1}{FN_i} + \frac{1}{FP_i} + \frac{1}{TN_i} \)

- Accounts for the heterogeneity across studies
- Does not account for the within study correlation between \(D \) and \(S \)
- \(S \) is assumed to be error free (introduces bias in the estimate of \(\beta \))
- Addition of 0.5 when there is a zero count (introduces bias)
The Between Study Model (Reitsma et al, 2005; Arends et al, 2007)

\[
\begin{pmatrix}
\xi_i \\
\eta_i
\end{pmatrix}
\sim N
\begin{pmatrix}
\begin{pmatrix}
\bar{\xi} \\
\bar{\eta}
\end{pmatrix},
\begin{pmatrix}
\sigma^2_{\xi} & \sigma_{\xi \eta} \\
\sigma_{\xi \eta} & \sigma^2_{\eta}
\end{pmatrix}
\end{pmatrix}
\]

(2)

with \(\xi_i = true \; \text{logit}(FPR_i)\) and \(\eta_i = true \; \text{logit}(TPR_i)\)

- Accounts for the heterogeneity across studies
- The measurement error in \(S\) is accounted for
- (2) can be characterized by different SROC curves (Arends et al, 2007)
Bivariate Random Effects Approach (Cont.)

- For example:
 - Regression of η on ξ
 \[
 \eta = \alpha + \beta \xi
 \]
 - α, β and $\sigma^2_{\eta|\xi}$ can be derived from (2)
 - $\alpha = \bar{\eta} - \frac{\sigma_{\xi \eta}}{\sigma^2_\xi} \bar{\xi}$
 - $\beta = \frac{\sigma_{\xi \eta}}{\sigma^2_\xi}$
 - $\sigma^2_{\eta|\xi} = \sigma^2_\eta - \frac{\sigma^2_{\xi \eta}}{\sigma^2_\xi}$
Bivariate Random Effects Approach (Cont.)

For example:

Regression of D on S

\[D = \alpha + \beta S \]

α, β and $\sigma^2_{D|S}$ can be derived from (2)

\[\alpha = \bar{D} - \frac{\sigma^2_\eta - \sigma^2_\xi}{\sigma^2_\xi + \sigma^2_\eta + 2\sigma_\xi \eta} \bar{S} \quad \text{with} \quad \bar{D} = \bar{\eta} - \bar{\xi} \quad \text{and} \quad \bar{S} = \bar{\eta} + \bar{\xi} \]

\[\beta = \frac{\sigma^2_\eta - \sigma^2_\xi}{\sigma^2_\xi + \sigma^2_\eta + 2\sigma_\xi \eta} \]

\[\sigma^2_{D|S} = (\sigma^2_\xi + \sigma^2_\eta - 2\sigma_\xi \eta) - \frac{(\sigma^2_\eta - \sigma^2_\xi)^2}{\sigma^2_\xi + \sigma^2_\eta + 2\sigma_\xi \eta} \]
Bivariate Random Effects Approach (Cont.)

- Other choices (Arends et al; 2007)
 - Regression of ξ on η
 - Rutter and Gatsonis
 - The major axis

- We considered the regression of D on S
 - Direct extension of the traditional SROC method
Modeling the Within Study Variability

- The within study variability can be assumed to follow a
 - Normal distribution ('Approximate Method')
 - Binomial Distribution ('Exact Method')

- Normal Distribution ('Approximate Method')

\[
\hat{\xi}_i \equiv N(\xi_i, \frac{1}{x_{0i} + \frac{1}{n_{0i} - x_{0i}}}) \quad \text{and} \quad \hat{\eta}_i \equiv N(\eta_i, \frac{1}{x_{1i} + \frac{1}{n_{1i} - x_{1i}}})
\]

- Addition of 0.5 when there is a zero count (introduces bias)
Binomial Distribution ('Exact Method')

\[x_{1i} \sim \text{binomial}\left(\frac{e^{\eta_i}}{1 + e^{\eta_i}}, n_{1i} \right) \]

and

\[x_{0i} \sim \text{binomial}\left(\frac{e^{\xi_i}}{1 + e^{\xi_i}}, n_{0i} \right) \]

- no need of adding a correction factor (0.5)
The three Random Effects Methods

Table: Summarizing the drawbacks of the three methods (U, AB, EB)

<table>
<thead>
<tr>
<th></th>
<th>U</th>
<th>AB</th>
<th>EB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account the between heterogeneity</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Account the within study correlation between D and S</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Account the measurement error in S</td>
<td>×</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>No need of a correction for zero denominators</td>
<td>×</td>
<td>×</td>
<td>✓</td>
</tr>
</tbody>
</table>
Generate ξ_i and η_i from a bivariate normal distribution

Calculate π_{0i} and π_{1i} from ξ_i and η_i

$\pi_{0i} = \frac{e^{\xi_i}}{1 + e^{\xi_i}}$ and $\pi_{1i} = \frac{e^{\eta_i}}{1 + e^{\eta_i}}$

Generate TP_i and FP_i from a binomial distribution

Different combination of the following true values

$(\bar{\xi}, \bar{\eta}) = (-2.20, 2.94), (-0.85, 0.62), (-0.85, 2.94)$

$(\sigma_\xi^2, \sigma_\eta^2) = (0.5, 0.5), (1.2, 1.2), (0.5, 1.2)$

$\rho_{\xi\eta} = 0.2, 0.5, 0.9$

$n = 40, 500$

$N = 25, 100$

The true values are motivated by existing meta-analysis
Simulation Study Setting

- For each scenarios 1000 simulation was carried out
- The performance of the methods compared
 - Bias
 - MSE
 - Confidence interval coverage probability
The Bias and Coverage probability do not vary largely with the

- between study variances (σ^2_ξ and σ^2_η)
- the correlation between ξ and η ($\rho_{\xi\eta}$)

The Bias and Coverage probability largely depends on the

- median within study sample size (n)
- median sensitivity and
- median specificity
Regardless of the scenario considered the EB

- estimates \bar{D} and β with
 - negligible amount of bias
 - reasonably acceptable coverage probability
- estimates $\sigma^2_{\eta/\xi}$ with small bias compared to the U and AB
- usually gives
 - smallest MSE for \bar{D} and $\sigma^2_{\eta/\xi}$
 - for β, smaller MSE than the AB
Simulation Results (Cont.)

- When n is small and $\bar{\xi}$ or $\bar{\eta}$ are large the U and AB
 - estimate \bar{D}, β and $\sigma^2_{\bar{\eta}/\xi}$ with
 - large amount of bias
 - low coverage probability (often far from the nominal value)

- Often the U approach gives the smallest MSE for β

- When n is large and $\bar{\xi}$ and $\bar{\eta}$ are small the U and AB give comparable results with the EB in terms of bias and coverage probability
Simulation Results when $\rho \xi \eta = 0.2$, $\sigma^2_\xi = 0.5$, $\sigma^2_\eta = 1.2$

True Parameter Values

§ $n=40$, $\eta=2.94$, $\xi=-2.20$, $\bar{D}=5.14$
‡ $n=500$, $\eta=0.62$, $\xi=-0.85$, $\bar{D}=1.47$

Simulation results for \bar{D}

<table>
<thead>
<tr>
<th>N</th>
<th>Bias</th>
<th>Coverage Probability</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>U</td>
<td>AB</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>-0.600</td>
<td>-0.799</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.590</td>
<td>-0.791</td>
</tr>
<tr>
<td>25</td>
<td></td>
<td>-0.031</td>
<td>-0.040</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.031</td>
<td>-0.039</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>-0.031</td>
<td>-0.040</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-0.031</td>
<td>-0.039</td>
</tr>
</tbody>
</table>

Simulation results for β

<table>
<thead>
<tr>
<th>N</th>
<th></th>
<th></th>
<th>Coverage Probability</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>U</td>
<td>AB</td>
</tr>
<tr>
<td>25</td>
<td>-0.137</td>
<td>-0.061</td>
<td>0.013</td>
<td>0.899</td>
</tr>
<tr>
<td></td>
<td>-0.141</td>
<td>-0.089</td>
<td>-0.003</td>
<td>0.685</td>
</tr>
<tr>
<td>25</td>
<td>-0.020</td>
<td>0.000</td>
<td>0.006</td>
<td>0.940</td>
</tr>
<tr>
<td></td>
<td>-0.025</td>
<td>-0.008</td>
<td>-0.001</td>
<td>0.929</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Simulation results for $\sigma^2_{D/S}$

<table>
<thead>
<tr>
<th>N</th>
<th></th>
<th></th>
<th>Coverage Probability</th>
<th>MSE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>U</td>
<td>AB</td>
</tr>
<tr>
<td>25</td>
<td>-0.580</td>
<td>-0.636</td>
<td>-0.081</td>
<td>0.999</td>
</tr>
<tr>
<td></td>
<td>-0.584</td>
<td>-0.607</td>
<td>-0.075</td>
<td>0.411</td>
</tr>
<tr>
<td>25</td>
<td>-0.138</td>
<td>-0.148</td>
<td>-0.091</td>
<td>0.898</td>
</tr>
<tr>
<td></td>
<td>-0.082</td>
<td>-0.090</td>
<td>-0.034</td>
<td>0.907</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Simulation Results (Hamza et al)

- Our result is in agreement with Hamza et al simulation study
- They compared the approximate and exact approaches for meta-analyzing proportions from different studies
- The Exact approach (for the proportion p and between studies variance)
 - quite unbiased estimate
 - reasonable coverage probability
 - the profile likelihood based confidence interval appeared to improve the coverage probability particularly when N is small (for example $N=10$)
 - better than the approximate even if the distribution of the true parameter is skewed
Simulation Results (Hamza et al)

- The approximate method
 - underestimate when \(n \) is small or \(p \) is large/small
 - low coverage probability when \(n \) is small or \(p \) is large/small
- They recommend the use of exact approach whenever it is feasible
We reanalyzed a published meta-analysis data (Oei et al; 2003)

They conduct a MEDLINE search from January 1991 - December 2000

Article were included if

- at least 30 patients were studied
- arthroscopy was the reference standard
- the magnetic field strength was reported
- positivity criterion was defined
- the absolute number of TP, FN, TN and FP results were available or derivable

We used the medial meniscal tears data which included 27 studies
Data Example: Diagnostic Performance of Magnetic Resonance Imaging (MRI)(Cont.)

- the models were fitted in the SAS procedure NLMIXED

<table>
<thead>
<tr>
<th>Parameter Estimates for MRI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter</td>
</tr>
<tr>
<td>Parameter estimates</td>
</tr>
<tr>
<td>α</td>
</tr>
<tr>
<td>β</td>
</tr>
<tr>
<td>σ^2_{α}</td>
</tr>
</tbody>
</table>

95% confidence interval				
α	[3.92, 5.05]	[3.20, 5.53]	[4.29, 5.67]	
β	[-0.81, 0.27]	[-2.57, 1.60]	[-1.66, 0.33]	
σ^2_{α}	[0.51, 2.63]	[0.39, 2.42]	[0.36, 3.00]	
Summarizing Sensitivity and Specificity

Figure: ROC curves from the three approaches for the MRI data
Compared to the EB approach

- the U underestimates
 - α by 0.492 and β by 0.394
- the AB underestimates
 - α by 0.616 and β by 0.182
Concluding Remarks

- The EB approach outperformed the U and AB
- The Models can easily be fitted in commercially available statistical packages, for example SAS NLMIXED
- We recommend the use of EXACT BIVARIATE approach
- Different options are available when there is a convergence problem in NLMIXED (SAS Institute Inc 2004. SAS/STAT User Guide)

Hamza TH, van Houwelingen H, Stijnen T. Random effects meta-analysis of proportions: how to model the within study variability? Journal of Clinical Epidemiology(Provisionally Accepted)